Rapid Induction of High-frequency *MTL* Homozygosis and Microbiological Polymorphism in *Candida albicans* by Fluconazole

Tsong-Yih Ou^{1,2}, Fang-Mo Chang³, Ming-Li Chou², Wei-Ning Cheng⁴, Kai-Cheng Lee², Che-Tong Lin³, Wen-Sen Lee¹, Fang-Lang Yu⁵, and Ching-Hua Su²

¹ Division of Infectious Disease, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital; ² Graduate Institute of Medical Sciences, Taipei Medical University; ³ School of Dentistry, College of Oral Medicine, Taipei Medical University; ⁴ Graduate Institute of Biomedical Material and Engineering, Taipei Medical University; ⁵ Division of Microbiology, Department of Clinical Laboratory, Taipei Medical University-Wan Fang Hospital; ⁶ Department of Microbiology and Immunology, Taipei Medical University.

Candida albicans is most common fungal pathogen of opportunistic infections. C. albicans was previously noted as a diploid, apparently asexual fungus. Morphological and genetic studies had found mating type-like locus ($MTLa/\alpha$) and demonstrated its relations to morphological switching, virulence, and fluconazole-resistance. A parasexual cycle was found between opposite MTL homozygotes. However, C. albicans was found with MTL homozygous genotype in only around 3.2 % of clinical strains, and MTL heterozygotes had a low frequency (about 10⁻⁴) of white-opaque (W/O) switch to be MTL homozygotes in nature. In the present study, reference C. albicans strain SC5314 was used for fluconazole-inducing assay to harvest 35 first-generation survival daughter strains from 70 colonies picked from fluconazole inhibitory zone. Further separation with spreading culture and micromanipulator methods was further employed to gain second- and third-generation strains with accordance to first-generation daughter strains. PCR analysis based on MTL a1, α 1 and α 2 was employed to demonstrate MTL genotypes of these isolates. Microscopic observation and flowcytometry assay were employed for cell/colony morphology and DNA content analysis on progeny SC5314 and its daughter strains. High frequency of MTL gene loss (24 of 35, 68.57 %) and homozygotes (16 of 35, 45.71 %) were found in fluconazole-inducing survival daughter strains with accordance to first-generation daughter strains. Polymorphism of cell/colony morphology and decreasing DNA content were also found in these fluconazole-inducing daughter strains. Fluconazole treatment not only inhibited the growth of C. albicans but also altered phenotypic characteristics in cell/colony morphology as well as induced rapid highfrequency MTL gene loss and homozygosity in fluconazole inhibition zone. The DNA content of these fluconazole-inducing daughter strains were also obviously reduced with comparison to their progeny SC5314 suggesting a possibility of chromosome loss and DNA rearrangement during the fluconazole treatment to C. albicans.

(292 words)

Keywords: Candida albicans, fluconazole, mating type like gene, homozygosis

Rapid Induction of High-frequency MTL Homozygosis, Microbiological Polymorphism and Changing Antifungal Susceptibility in Candida albicans by Fluconazole

Tsong-Yih Ou^{1,2}, Fang-Mo Chang³, Ming-Li Chou², Wei-Ning Cheng⁴, Kai-Cheng Lee², Che-Tong Lin³, Wen-Sen Lee¹, Fang-Lang Yu⁵, and Ching-Hua Su²

¹ Division of Infectious Disease, Department of Internal Medicine, Taipei Medical University-Wan Fang Hospital; ² Graduate Institute of Medical Sciences, Taipei Medical University; 3 School of Dentistry, College of Oral Medicine, Taipei Medical University; 4 Graduate Institute of Biomedical Material and Engineering, Taipei Medical University; 5 Division of Microbiology, Department of Clinical Laboratory, Taipei Medical University-Wan Fang Hospital; 6 Department of Microbiology and Immunology, Taipei Medical University.

Keywords: Candida albicans, fluconazole, mating type like gene, homozygosis

- Background Candida albicans is most common fungal pathogen of opportunistic infections. C. albicans was previously noted as a diploid, apparently asexual fungus. Morphological and genetic studies had found mating type-like locus (MTLaI lpha) and demonstrated its relations to morphological switching, virulence, and fluconazoleresistance. A parasexual cycle was found between opposite MTL homozygotes. However, C. albicans was found with MTL homozygous genotype in only around 3.2 % of clinical strains, and MTL heterozygotes had a low frequency (about 10-4) of white-opaque (W/O) switch to be MTL homozygotes in nature.
- Methods. In the present study, reference C. albicans strain SC5314 was used for fluconazole-inducing assay to harvest 35 first-generation survival daughter strains from 70 colonies picked from fluconazole inhibitory zone. Further separation with spreading culture and micromanipulator methods was further employed to gain second- and third-generation strains with accordance to first-generation daughter strains. PCR analysis based on MTL a1, α 1 and α 2 was employed to demonstrate MTL genotypes of these isolates. Microscopic observation and flowcytometry assay were employed for cell/colony morphology and DNA content analysis on progeny SC5314 and its daughter strains.
- Results. High frequency of MTL gene loss (24 of 35, 68.57 %) and homozygotes (16 of 35, 45.71 %) were found in fluconazole-inducing survival daughter strains with accordance to first-generation daughter strains. Polymorphism of cell/colony morphology and decreasing DNA content were also found in these fluconazoleinducing daughter strains.
 - Conclusions. Fluconazole treatment not only inhibited the growth of C. albicans but also altered phenotypic characteristics in cell/colony morphology as well as induced rapid high-frequency MTL gene loss and homozygosity in fluconazole inhibition zone. The DNA content of these fluconazole-inducing daughter strains were also obviously reduced with comparison to their progeny SC5314 suggesting a possibility of chromosome loss and DNA rearrangement during the fluconazole treatment to C. albicans.

Strains series*	Characteristics	MTL genotypes b	number of strains	Loss of MTL locus	MTL homozygosis
SC5314 (n=1)	progeny	alαlα2	1		
FI-FGDS (n=35)	Derivate from	alαlα2	31	4/35 (11.4%)°	4/35 (11.4%)°
(First generation)	SC5314	al	2		
		α1α2	2		
		bizarre ^b	0		
		died	35		
FI-SGDS (n=87) (Second generation)	From FI-FGDS	alala2	71	14/35 (40.0%)°	10/35 (28.6%)°
		al	5		
		α1α2	7		
		bizarre b	4		
		died	0		
FI-TGDS (n=141) (Third generation)	From FI-SGDS	alala2	84	24/35 (68.6%)°	16/35 (45.7%)°
		al	22		
		α1α2	17		
		bizarre b	18		
			0		

NOTE. Candida albicans strain SC5314 and its derivates daughter strain

r strains.

ration daughter strains; FI-SGDS, fl
le-inducing third-generation daughte NO1E. Candida alticans strain SC.5314 and its derivates on MTL, matting type like; FI-FGDS, fluonaoabe-inducing first inducing second-generation daughter strains; FI-TGDS, fluorabed from ATCC. The 4 SC5314 is the reference strain purchased from ATCC. The 4 MTL genotypes of $a1/\alpha$ 1, $a1/\alpha$ 2, α 1, or α 2 were defined as 4 The ratios were defined with accordance to first-generation

Table 2. Frequencies of Candida albicans wit	th MTL homozygosis in different literatures	
Strains features	Frequencies of MTL homozygotes	Literatures
Nature happening	1.4x10 ⁻⁴	[Slutsky et al. 198

Nation Reporting 100% [Lockhart et al., 2002] Strain WO-17 100% [Lockhart et al., 2002] Clinical isolates (220 strains) 3.2x10 ⁻² [Lockhart et al., 2002] Fluconazole-inducing assay on strain SC5314 4.57x10 ⁻¹ Present study			
Strain WO-1 ^a 100% [Lockhart et al, 2002]	Fluconazole-inducing assay on strain SC5314	4.57x10 ⁻¹	Present study
Thurst mappening	Clinical isolates (220 strains)	3.2x10 ⁻²	[Lockhart et al, 2002]
Nature happening 1 4x10" Slutsky et al. 1987	Nature happening Strain WO-1 ^a	1.4x10~	,

NOTE. Literatures about frequencies of MTL homozygotes for comparing with the results in this study MTL, matting type like

Figure 1. Polymorphism of cell/colony morphologies were found in initial-stage colonies of daughter strains, compared to progeny SC5314. Cell, initial-stage colony, and 5-day colony morphologies of strains SC5314, FI-FGDS-A17, FI-SGDS-A17-1, FI-TGDS-A17-1-L2, and FI-FGDS-A25. Cell (left column) morphologies were shown after growth on YPD agar for 12 hours at 30 °C and visualized by light microscopy and photographed at 400x objectvie. Initial-stage colony (middle column) morphologies were shown after growth on YPD agar for 12 hours at 30 °C and visualized by light. microscopy and photographed at 100x objectvie. 5-day colony (right column) morphologies were shown after growth on YPD agar for 120 hours at 30 °C and visualized by light microscopy and photographed at 10x objective. White/opaque cells were seen in Lee's medium series daughter strains. Filamentous cells were frequently seen in fluconazole-inducing daughter strains.

Figure 2. Decreasing DNA content in daughter strains. DNA contents of strain SC5314, FI-FGDS-A17, FI-SGDS-A17-1, FI-TGDS-A17-1-L2, and FI-FGDS-A25. DNA contents were evaluated by Sytox Green dye stained flowcytometric analysis for the indicated strains. With accordance to indicated first-generation daughter strains, analyses on each FI-FGDS associated strains were merged for comparison to their progeny strain SC5314. (A) FI-FGDS-A17. (B) FI-FGDS-A25.

References

- 1. Hull CM, Johnson AD. Identification of a Mating Type-Like Locus in the Asexual Pathogenic Yeast Candida albicans. Science 1999; 285: 1271-5.
- 2. Coste A, Selmecki A, Forche A, et al. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 2007; 6: 1889-904.
- 3. Bennett RJ, Johnson AD. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J 2003; 22: 2505-15. 4 Lockhart SR Pujol C. Daniels K.J. et al. In Candida albicans. White-Opaque Switchers
- Are Homozygous for Mating Type. Genetics 2002; 162: 737-45.
- 5. Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR. White-opaque transition: a second high-frequency switching system in Candida albicans. J Bacteriol 1987; 169: 189-97.

AMC 2011

Asian Mycological Congress

with 12th International Marine and Freshwater Mycology Sympo August 7-11, 2011 / Incheon, Korea

Home

My Page

Log In

O Invitation

Organization

Congress Venue and Maps

Scientific Program

- Program at a Glance
- List of Plenary Lectures
- AMC2011 Oral Presentation List
- IMFMS Oral Presentation List
- Call for Papers
- Registration
- Accommodations
- Official & Social Programs
- O Tour Programs
- Sponsorship & Exhibition

Asian Mycological Congress 2011 with 12" International Marine and Freshwater Mycology Symposium

Scientific Program

Program at a Glance

Nº 2011078

		AMC2011			
Date	Time	Hall 12-101	Hall 12-103		
08. 07	13:00-14:00		Registration		
	14:00-14:30	Openi	ing Ceremony (Art Hal	1)	
	14:30-15:20	Plena	ary Lecture 1 (Art Hall))	
	15:20-15:40		Coffee Break		
	15:40-17:40	Symposium 1-1 Fungal Systematics: Basidiomycota and Ascomycota I	Symposium 3 Mycorrhizae and Endophytic Fungi		
	18:00-20:00	V	Welcome Reception		
	08:30-09:30		Registration		
	09:30-10:20	Plena	ary Lecture 2 (Art Hall))	
	10:20-11:00	Photo	o Session/Coffee Breal	<	
	11:00-13:00	Symposium 1-2 Fungal Systematics: Ascomycota II	Symposium 5 Mushroom Biology and Cultivation Technology	Ta	
08. 08	13:00-14:00		Lunch		
	14:00-14:50	Plenary Lecture 3 (Hall 12-103)			
	14:50-16:00	Coffee Break/Poster Session			
	16:00-18:00	Symposium 2-1 Fungal Systematics: Biodiversity	Symposium 6 Genetics and Molecular Cell Biology	Bio	
	09:30-10:20	Plenary Lecture 4 (Art Hall))	
	10:20-11:00	Coffee Break/Poster Session		n	
08. 09	11:00-13:00	Workshop "Outcomes-based Teaching and Learning in Mycology - Enhancement of Learning through Assessment"	Symposium 7 Physiology and Biochemistry	Biod	
	13:00-14:00	Lunch			
	14:00-14:50	Plenary Lecture 5 (Hall 12-103)			
	14:50-15:20	Coffee Break/Poster Session			
	15:20-17:20	Symposium 8 Fungal Plant Pathology	Symposium 9 Fungal Ecology and Community	I Bior and compl aq	

	09:30-11:30	Symposium 10 Molecular Plant-Fungal Interactions	Symposium 11 Medicinal and Food Mycology
	11:30-12:00	Со	ffee Break/Poster Session
	12:00-13:00 Offered paper		Offered paper session 2
	13:00-14:00		Lunch
08. 10	14:00-16:00	Symposium 13 Fungal Bioremediation	Symposium 14 Inventory and Databases of Fungi (MSJ & KSM)
	16:00-16:10	Co	offee Break/Poster Session
	16:10-18:10	Symposium 16 Quarantine and Diagnosis	Offered paper session 4
	18:10-19:20		Congress Dinner
Ì	19:30-20:20	A	Art performance (Art Hall)
	20:20-20:50		Closing (ART Hall)
08. 11	09:00		Tour